Birzeit University
Faculty of Engineering \& Information Technology
Department of Civil \& Environmental Engineering
ENCE233 Mechanics of Materials
Homework assignment \#3

Problem 1:

Given the following data for a tension test for an unknown material. The original specimen has a circular cross section with a diameter of 9.11 mm .

- Draw the stress-strain diagram for this material. Is it a ductile or brittle material? justify your answer.
- Draw the elastic stress-strain curve. Determine the proportional limit, yield strength (upper \& lower), ultimate strength, and fracture stress and strain.
- Determine the elastic modulus (Young's modulus).
- BONUS: Calculate modulus of resilience and modulus of toughness (+10 Points)

Problem 2:

The stress-strain diagram for a polyester resin is given in the figure. If the rigid beam AC is supported by a strut $A B$ and post $C D$, both made from this material, and subjected to a load of $P=80 \mathrm{kN}$, determine the angle of tilt of the beam when the load is applied. The diameters of the strut and post are 40 mm and 80 mm , respectively. Determine the largest load P that can be applied to the beam before failure in strut $A B$ or post CD.

Problem 3:

The support consists of three rigid plates, which are connected using two symmetrically placed rubber pads. If a vertical force of 5 N is applied to plate A , determine the approximate vertical displacement of this plate due to shear strains in the rubber. Each pad has cross-sectional dimensions of 30 mm and $20 \mathrm{~mm} . \mathrm{G}_{\mathrm{r}}=0.20 \mathrm{MPa}$.

Problem 4:

The rigid pipe ADC is supported by a pin at A and a wire at D . The wire made from the same material in Problem 1 and has a diameter of 6 mm . Determine (a) the elongation of the wire BD if $\mathrm{P}=2 \mathrm{kN}$ and $\mathrm{P}=3.5 \mathrm{kN}$. (b) the permanent strain after the load is removed for each case.

Problem 5:

The block shown is made of a magnesium alloy for which $\mathrm{E}=45 \mathrm{GPa}$ and $v=0.35$. Knowing that $\sigma_{x}=-180 \mathrm{MPa}$, determine (a) the magnitude of σ_{y} for which the change in the height of the block will be zero, (b) the corresponding change in the area of the face ABCD , (c) the corresponding change in the volume of the block.

